Rate-independent elastoplasticity at finitesrains and its numerical approximation

نویسندگان

  • Alexander Mielke
  • Tomáš Roubíček
چکیده

Gradient plasticity at large strains with kinematic hardening is analyzed as quasistatic rate-independent evolution. The energy functional with a frame-indifferent polyconvex energy density and the dissipation are approximated numerically by finite elements and implicit time discretization, such that a computationally implementable scheme is obtained. The non-selfpenetration as well as a possible frictionless unilateral contact is considered and approximated numerically by a suitable penalization method which keeps polyconvexity and simultaneously by-passes the Lavrentiev phenomenon. The main result concerns the convergence of the numerical scheme towards energetic solutions. In the case of incompressible plasticity and of nonsimple materials, where the energy depends on the second derivative of the deformation, we derive an explicit stability criterion for convergence relating the spatial discretization and the penalizations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Formulation of Closest-Point Projection Algorithms in Elastoplasticity

We present in this paper the characterization of the variational structure behind the discrete equations defining the closest-point projection approximation in elastoplasticity. Rate-independent and viscoplastic formulations are considered in the infinitesimal and the finite deformation range, the later in the context of isotropic finite strain multiplicative plasticity. Primal variational prin...

متن کامل

A Quasi-Static Boundary Value Problem in Multi-Surface Elastoplasticity: Part 2 – Numerical Solution

Multi-yield elastoplasticity models a material with more than one plastic state and hence allows for refined approximation of irreversible deformations. Aspects of the mathematical modeling and a proof of unique existence of weak solutions can be found in part I of this paper [BCV04]. In this part II we establish a canonical time-space discretization of the evolution problem and present various...

متن کامل

Meshless Method for Modeling Large Deformation with Elastoplasticity

Over the past two decades meshless methods have attracted much attention owing to their advantages in adaptivity, higher degree of solution field continuity, and capability to handle moving boundary and changing geometry. In this work, a meshless integral method based on the regularized boundary integral equation has been developed and applied to two-dimensional linear elasticity and elastoplas...

متن کامل

Adaptive Finite Elements in Elastoplasticity with Mechanical Error Indicators and Neumann-type Estimators

Abstract: Many interesting tasks in technology need the solution of complex boundary value problems modeled by the mathematical theory of elasticity and elastoplasticity. Error controlled adaptive strategies should be used in order to achieve a prescribed accuracy of the computed solutions at minimum cost. In this paper, locally computed residual error indicators in the primal form of the finit...

متن کامل

Qualitative and Numerical Analysis of Quasistatic Problems in Elastoplasticity

The quasistatic problem of elastoplasticity with combined kinematic-isotropic hardening is formulated as a time-dependent variational inequality (VI) of the mixed kind, that is, it is an inequality involving a nondiierentiable functional and is imposed on a subset of a space. This VI diiers from the standard parabolic VI in that time derivatives of the unknown variable occurs in all of its term...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016